Министерство образования Иркутской области

Департамент образования города Иркутска

Муниципальное бюджетное общеобразовательное учреждение

города Иркутска средняя общеобразовательная школа № 24

МБОУ г. Иркутска СОШ №24

PACCMOTPEHO

на заседании методического объединения учителей начальных классов

от 28.08.2023 г, протокол №1. Руководитель МО М.В. Скрябина СОГЛАСОВАНО

с заместителем директора по учебно-воспитательной работе от 28.08.2023 г.

О.М.Иванова

УТВЕРЖДЕНО

Приказ № 01-10-119/1

от 30. 08.2023 г.

Директор Н.В. Шаравина

ОТЯНИЯП

решением педагогического совета от 30.08.2023 г,

протокол №1

РАБОЧАЯ ПРОГРАММА

учебного курса

«Информатика»

(для обучающихся 1-4 классов образовательных организаций)

Срок освоения – 1год

Уровень сложности программы БАЗОВЫЙ

Составитель программы: Ярошенко А.Е. учитель начальных классов

г. Иркутск, 2023 год

Пояснительная записка

Современные профессии, предлагаемые выпускникам учебных заведений, предъявляют высокие требования к интеллекту работников. Информационные технологии занимают лидирующее положение на международном рынке труда. Но если навыки работы с конкретной техникой можно приобрести непосредственно на рабочем месте, то мышление следует развивать в определенные природой сроки. Опоздание .c развитием мышления — это опоздание навсегда. Поэтому при подготовке детей к жизни в современном информационном обществе в первую очередь необходимо развивать логическое мышление, способности к анализу и синтезу (вычленению структуры объекта, выявлению взаимосвязей, осознанию принципов организации, созданию новых схем, структур и моделей).

Можно выделить два аспекта изучения информатики:

общеобразовательный:

информатика рассматривается как средство развития логического мышления, умений анализировать, выявлять сущности и отношения, описывать планы действий и делать логические выводы;

технологический:

информатика рассматривается как средство формирования образовательного потенциала, позволяющего развивать наиболее передовые на сегодня технологии — информационные.

В курсе «Информатика в играх и задачах» компьютер не используется и для преподавания по курсу технические знания не нужны. Компьютер в курсе присутствует неявно — в виде правил составления описаний предметов (объектов), их поведения и логических рассуждений о них, в виде требований к строгости и логической аккуратности составления таких описаний.

В отличие от других учебных предметов, изучающих конкретные модели (математические, физические и т. д.), на уроках информатики дети изучают сам процесс самостоятельного создания моделей, т. е. составления описаний. В информатике важно именно умение создавать модели, потому что модель зависит не только от моделируемого объекта, но и от целей ее создания. Это происходит потому, что в модель включаются не все сведения об объекте, а только те, которые важны для целей моделирования. Так, например, модели пианино для директора магазина, для грузчика, для музыканта разные, потому что для каждого из них в этом предмете важны разные аспекты. Все возможные цели моделирования предусмотреть невозможно, поэтому следует учить процессу построения моделей.

Информатика как наука о построении информационно-логических моделей имеет особое значение для общего образования по двум причинам:

- умение строить строгие логические описания и описывать сложные явления, выделяя самое существенное, играет важную роль в формировании единой картины мира;
- возможность рассмотрения в качестве объектов моделирования других учебных предметов показывает очень высокий потенциал межпредметных связей информатики; на практике дети часто сами применяют полученные на уроках информатики знания и умения на других уроках.

Изучение курса «Информатика в играх и задачах» может проходить в любой школе, так как компьютеры для этого не требуются. Более того, детально описанные поурочные планы ориентированы на преподавание курса учителями начальных классов, что с успехом и происходит на практике. Рассматривая в качестве одной из целей этого направления обучения развитие логического мышления, следует помнить: психологи утверждают, что основные логические структуры мышления формируются в возрасте 5—11 лет и что запоздалое формирование этих структур протекает с большими трудностями и часто остается незавершенным. Следовательно, обучать детей в этом направлении целесообразно с начальной школы.

Цели и задачи курса

Главная цель курса —дать ученикам фундаментальные знания в областях, связанных с информатикой, которые вследствие непрерывного» обновления и изменения в аппаратных средствах выходят на первое место в формировании научного информационнотехнологического потенциала общества.

Основная задача курса — научить проведению анализа действительности для построения информационно-логических моделей и их изображения с помощью какого-либо системно-информационного языка.

Цели изучения основ информатики в начальной школе

- 1. *Развитие у школьников устойчивых навыков решения задач* с применением таких подходов к решению, которые наиболее типичны и распространены в областях деятельности, связанных с использованием информационно-логических моделей:
- *применение формальной логики* построение выводов путем применения к известным утверждениям логических операций «если..., то...», «и», «или», «не» и их комбинаций «если ... и ..., то...»;
- *алгоритмический подход*—умение планировать последовательность действий для достижения какой-либо цели, а также решать широкий класс задач, для которых ответом является не число или утверждение, а описание последовательности действий;
- системный nodxod рассмотрение сложных, объектов и явлений в виде набора более простых составных частей, каждая из которых выполняет свою роль для функционирования объекта в целом; рассмотрение влияния изменения в одной составной части на поведение всей системы;
- объектно-ориентированный подход постановка во главу угла объектов, а не действий, умение объединять отдельные предметы в группу с общим названием, выделять общие признаки предметов этой группы и действия, выполняемые над этими предметами; умение описывать предмет по принципу «из чего состоит и что делает (что можно с ним делать)».
- 2. Расширение кругозора в областях знаний, тесно связанных с информатикой: знакомство с графами, комбинаторными задачами, логическими играми с выигрышной стратегией («начинают и выигрывают») и некоторыми другими. Несмотря на ознакомительный подход к данным понятиям и методам, по отношению к каждому из них предполагается обучение решению простейших типовых задач, включаемых в контрольный

материал, т. е. акцент ставится на умении приложения даже самых скромных знаний.

3. Создание у учеников навыков решения логических задач и ознакомление с общими приемами решения задач — «как решать задачу, которую раньше не решали» (поиск закономерностей, рассуждения по аналогии, по индукции, правдоподобные догадки, развитие творческого воображения и др.).

Говоря об общеобразовательной ценности курса информатики, авторы считают, что умение любого человека выделить в своей предметной области систему понятий, представить их в виде совокупности атрибутов и действий, описать алгоритмы действий и схемы логического вывода не только поможет эффективному внедрению автоматизации в его деятельность, но и послужит самому человеку для повышения ясности мышления в своей предметной области.

.

СТРУКТУРА КУРСА

В материале курса выделяются следующие рубрики: статическая картина объекта — структуры, классы; картина поведения объекта — процессы и алгоритмы; язык как объект моделирования — логика рассуждений; информационная модель объекта — приемы моделирования и решения задач.

Материал этих рубрик изучается на протяжении всего курса концентрически, так что объем соответствующих понятий возрастает от класса к классу.

К концу III класса обучающиеся должны уметь:

- Находить общее в составных частях и действиях у всех предметов из одного класса (группы однородных предметов);
- Называть общие признаки предметов из одного класса и значения признаков у разных предметов из этого класса;
- Понимать построчную запись алгоритмов и запись с помощью блок-схем;
- Выполнять простые алгоритмы и составлять свои по аналогии;
- Выбирать граф, правильно изображающий предложенную ситуацию;
- Находить на рисунке область пересечения двух множеств и называть элементы из этой области.

Содержание

Алгоритмы

Алгоритм как план действий, приводящих к заданной цели. Формы записи алгоритмов: блок-схема, построчная запись. Выполнение алгоритма. Составление алгоритма. Поиск ошибок в алгоритме. Линейные, ветвящиеся, циклические алгоритмы.

Группы (классы) объектов

Общие названия и отдельные объекты. Разные объекты с общим названием. Разные общие названия одного отдельного объекта. Состав и действия объектов с одним общим названием. Отличительные признаки. Значения отличительных признаков (атрибутов) у разных объектов в группе. Имена объектов.

Логические рассуждения

Высказывания со словами «все», «не все», «ни какие». Отношения между множествами (объединение, пересечение, вложенность). Графы и их табличное описание. Пути в графах. Деревья возможностей.

Модели в информатике

Игры. Анализ игры с выигрышной стратегией. Решение задач по аналогии. Решение задач на закономерности. Аналогичные закономерности.

Nº	Наименование разделов и тем		
1	Введение.		
2	Алгоритм.		
3	Схема алгоритма.		
4	Ветвление в алгоритме.		
5	Цикл в алгоритме.		
6	Алгоритмы с ветвлениями и циклами.		
7	Составление алгоритма.		
8	Поиск ошибок в алгоритме.		
9	Контрольная работа.		
10	Состав и действия объектов.		
11	Группа объектов .		
12	Общие свойства объектов группы.		
13	Особенные свойства объектов группы.		
14	Единичное имя объекта.		
15	Отличительные признаки объектов.		
16	Контрольная работа.		
17	Работа над ошибками.		
18	Множество. Подмножество.		
19	Элементы, не принадлежащие множеству.		
20	Пересечение и объединение множеств.		
21	Вложенные множества.		
22	Истинность высказываний со словом «не».		
23	Граф. Вершины и рёбра графа.		
24	Граф. Вершины и рёбра графа.		
25	Граф с направленными рёбрами.		
26	Пути в графах.		
27	Деревья возможностей.		
28	Контрольная работа.		
29	Работа над ошибками.		
30	Игры .		
31	Анализ игры с выигрышной стратегией.		
32	Решение задач по аналогии.		
33	Решение задач на закономерности.		
34	Аналогичные закономерности.		

Календарно – тематическое планирование

по курсу «Информатика в играх и задачах»

Класс 3

Учитель Архипова С.В

Количество часов: 34ч.

в неделю 1 ч.

Планирование составлено на основе Программы общеобразовательных

учреждений. Начальные классы. –Москва «Просвещение» 2000

№ п/п	Дата	Наименование разделов и тем
		1 полугодие 1 триместр
1	2.09	Рродомио
2	9.09	Введение . Алгоритм.
		_
3	16.09	Схема алгоритма
4	23.09	Ветвление в алгоритме
5	30.09	Цикл в алгоритме
6	7.10	Алгоритмы с ветвлениями и циклами
7	21.10	Составление алгоритма.
8	28.10	Поиск ошибок в алгоритме.
9	11.11	Контрольная работа
10	18.11	Состав и действия объектов.
		2 триместр
11	2.12	Cavitate of auton
12	9.12	Группа объектов Общие свойства объектов группы
13	16.12	Особенные свойства объектов группы.
	23.12	= -
14		Единичное имя объекта
15	30.12	Отличительные признаки объектов
1.0	12.01	2 полугодие
16	13.01	Отличительные признаки объектов.
17	20.01	Контрольная работа.
18	27.01	Работа над ошибками. Множество. Подмножество.
19	3.02	Элементы, не принадлежащие множеству.
20	10.02	Пересечение и объединение множеств.
21	17.02	Вложенные множества.
		3 триместр
22	3.03	Истинность высказываний со словом «не».
23	10.03	Граф. Вершины и рёбра графа.
24	17.03	Граф. Вершины и рёбра графа.
25	24.03	Граф с направленными рёбрами.
26	31.03	Пути в графах.
27	7.04	Деревья возможностей.
28	21.04	Деревья возможностей. Контрольная работа.
	28.04	Работа над ошибками.
29	5.05	
30		Игры.
31	12.05	Анализ игры с выигрышной стратегией.
32	19.05	Решение задач по аналогии.
33-34	26.05	Решение задач на закономерности.
		Аналогичные закономерности.

Учебно-методический материал

Учебно-методический материал по курсу начальной школы (Информатика в играх и задачах: Шк. 1—3, 1—4/А. В. Горячев, Т. О. Волкова, К- И. Горина и др.) состоит из четырех комплектов. В состав каждого комплекта входят 4 учебные тетради для учеников (по одной на четверть), 4 методических пособия для учителя (по одной на четверть) и 8 контрольных работ (по два варианта на четверть).

Комплект № 1 рассчитан на 6-летних детей и изучается в I классе по программе 1-4. Комплект № 2 рассчитан на 7-летних детей и изучается в I классе по программе I-3 и во II классе по программе 1-4. Материалы комплектов № 1 и № 2 предназначены для подготовки детей к предстоящим занятиям, развития у них логического мышления и сообразительности. При проведении занятий максимально возможно применяются занимательные и игровые формы обучения. Как правило, различные темы и формы подачи учебного материала активно чередуются в течение одного урока.

Начиная с комплекта № 3 и далее, обучение логическим основам информатики проводится по нескольким направлениям, за каждым из которых закреплена учебная четверть, Таким образом, изучение материала происходит по спирали — ученики каждую четверть продолжают изучение темы этой же четверти прошлого года. Кроме того, задачи по каждой из тем могут быть включены в любые уроки в любой четверти в качестве разминки. Занятия проходят один раз в неделю. Каждая учебная четверть заканчивается контрольной работой:

```
I четверть — алгоритмы;
```

II четверть — объекты;

III четверть—логические рассуждения;

IV четверть — модели в информатике.

Комплект № 3 рассчитан на 8-летних детей и изучается во **2** классе по программе 1—3 и в **3** классе по программе 1—4. Комплект № 4 рассчитан на 9-летних детей и изучается в **3** классе по программе 1—3 и в 4 классе по программе 1—4.

Материал комплекта № 3 не опирается напрямую на конкретные знания комплекта № 2, являющегося пропедевтическим, поэтому можно начать преподавание по курсу сразу с комплекта № 3. В то же время апробация показала, что дети, начавшие изучение курса с I класса, с большим удовольствием воспринимают эти уроки, начинают лучше успевать по другим предметам и легче усваивают материал курса на следующем году обучения